

Institute of Microelectronics and Photonics

Personnel Training and Exchange

• 1st pillar	• 2nd pillar	-
Exchange of scientific staff	Joint research groups	
Stays at universities	Composed of scientist from both countries	
Stays at Research Institutes	Working on one project	
Stays in industry for commercialization experts and future managers	Fostering the relationships between market and research	

Personnel Training and Exchanges Three pillars for a sucessful cooperation

3rd pillar

Current opportunities

Towards establishing of the PL-TW Semiconductor Excellence Center

Infant Technologies/Future Materials

Semiconductor Devices on novel substrates More efficent devices or cost-effective processes

Substrates for microelectronics

- bulk GaN (vertical transistors),
- Ga2O3,
- h-BN,
- single crystal diamond,
- engineered substrates:
 - adapted to particular applications
 - lower production costs, while maintaining properties

Substrates for photonics: GaSb, InSb, bulk AIN

Cooperation regarding establishing the requirements and needs for novel engineered substrates

Semiconductor Devices on novel substrates

for photonics, power electronics and sensing applications


```
Antimonides (GaSb,InSb, alloys)
Arsenides (GaAs, InAs, alloys)
Phosphides (InP)
```

for IR and THz Quantum Cascade Lasers, VCSELs and photodetectors

h-BN and other 2D materials (MoS₂, WS₂, HfS₂, HfS₂, HfSe₂...)

for sensors, photodetectors, transistors with possible integration with other materials

Łukasiewicz

IMIE

Semiconductor Devices on novel substrates

for photonics, power electronics and sensing applications

We would like to jointly develop/advance the **semiconductor technologies using Ga₂O₃, AlN, A_{III}B_v, diamond h-BN and other 2D materials or engineered substrates towards next generation semiconductor devices. This would mainly consider joint R&D actions - R&D projects, conferences, workshops and commercialization, when necessary.**

AIN, diamond, Ga₂O₃ substrates and epitaxial layers for very high voltage power electronics devices

engineered substrates (GaN-on-SOI, GaN-on-QST, SmartSiC[™] from Soitec, SiCkrest from SICOXS) for next generation cheap GaN and SiC power devices and power ICs

Łukasiewicz

IMIE

Semiconductor Devices on novel substrates Development of wafer market

Institute of Microelectronics and Photonics

Semiconductor Integrated Circuits

Semiconductor Intergated Circuits

ASIC Development and Electronic Systems Design Lab

- Telemedicine, smart control, cybersecurity
- Data acquisition systems, sensors, ROIC
- Specialized integrated electronics (ASIC, FPGA)
- Embedded software
- Automated measurements setup design
- Development of electronic systems based on commercial components
- Commercial projects for RTO / SME

e-CUBES	FP6	2006-2010	BioSiP	PBS	2012-2015
SE2A	ENIAC	2007-2010	Nanoheat	FP7	2012-2016
MNS-DIAG	POIG	2007-2013	HeC	ROB	2013-2016
Corona	FP7	2008-2012	SESBE	FP7	2013-2017
e-BRAINS	FP7	2009-2013	CarrICool	FP7	2014-2017
MINTE	POIG	2009-2013	Lab4MEMS-II	ENIAC	2014-2018
PARSIMO	ENIAC	2011-2014	APRIL	POLBER2	2015-2017
SMAC	FP7	2011-2015	ParCour	POLBER3	2018-2020

R3-PowerUP	H2020	2018-2022	300mm Pilot Line for Smart Power and Power Discretes
REACTION	H2020	2018-2022	first and euRopEAn siC eigTh Inches pilOt line
CHARM	H2020	2020-2023	Challenging environments tolerant Smart systems for IoT
Milevianse	POLBER4	2020-2022	MIcroLens WIde ANgle Sensor and AI
DIH-World	H2020	2020-2023	Accelerating deployment and matureness of DIHs for the benefit of Digitisation
MirPIC	TMS3	2021-2024	Technologie układów fotoniki scalonej na zakres średniej podczerwieni

Semiconductor Intergated Circuits

Activities related to IT/OT and Cybersecurity

- Hardware implementation of encryption systems
 - ASIC, FPGA
- Development of integrated IoT appliances
 - Microcontroller based SoC electronic system in a single chip
 - Configurable architecture
 - Variety of interface modules available
 - Configurable instruction set, non-compatible with commercial MCUs
 - Integration of RAM and non-volatile memories
 - System booting from encrypted program memory
 - Integration of tailored analog peripherals
 - Embedded cryptosystem accelerators

Łukasiewicz

Semiconductor Intergated Circuits

Current needs related to IC Design

Łukasiewicz IMiF

- Access to design libraries
- Acesss to fab facilities for small volume test production of transistors and integrated circuits
- Access to professional industrial design software
- Access to Production Design Kits under balanced NDA

Institute of Microelectronics and Photonics

Infrared Photonics

Infrared Photonics

for wireless optical communication, sensing, IR countermeasures

Technology of mid-IR QCLs

Infrared Photonics

for wireless optical communication, sensing, IR countermeasures

We develop mid-IR QCLs since 2009.

Current wavelength range:

4.5-5.5 μm and 8-10+ μm

Current designs:

- Single mode: CC QCLs, DFB
- High power devices: Taper QCLs

Infrared Photonics

for wireless optical communication, sensing, IR countermeasures

Interest in cooperation – R&D and industry:

Increase of know-how and technology level

Exchange of ideas and expanding collaboration with leading TW groups

Topics for cooperation:

- Mid-IR devices and applications,
- fabrication, growth of semicon structures,
- development of application specific light sources,
- lasers for sensing

R&D Experience:

many projects focused on development of devices:

- Development of single mode QCLs for application in gas sensing systems
- Development of high power QCL (modules/heads)
- Development of QCL modules for mid-IR operating FSO system
- Development of MWIR heterostructures (growth and fabrication technology) and FPA processing

Lukasiewicz Instytut Mikroelektroniki i Fotoniki

Contact Details

Piotr J. Cywiński

Head of Commercialization and Sales e-mail: piotr.cywinski@imif.lukasiewicz.gov.pl +48 789 224 132

